sexta-feira, 28 de outubro de 2011


ORIGEM DOS NÚMEROS NEGATIVOS
    O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar, entenda-se nascimento, e desenvolvimento da Matemática. As atividades práticas do homem, por um lado, e as exigências internas da Matemática por outro determinaram o desenvolvimento do conceito de número. A necessidade de contar objetos levou ao aparecimento do conceito de número Natural. 
    Todas as nações que desenvolveram formas de escrita introduziram o conceito de número Natural e desenvolveram um sistema de contagem. O desenvolvimento subsequente do conceito de número prosseguiu principalmente devido ao próprio desenvolvimento da Matemática. Os números negativos aparecem pela primeira vez na China antiga. Os chineses estavam acostumados a calcular com duas coleções de barras - vermelha para os números positivos e preta para os números negativos.No entanto, não aceitavam a ideia de um número negativo poder ser solução de uma equação. Os Matemáticos indianos descobriram os números negativos quando tentavam formular um algoritmo para a resolução de equações quadráticas. São exemplo disso as contribuições de Brahomagupta, pois a aritmética sistematizada dos números negativos encontra-se pela primeira vez na sua obra. As regras sobre grandezas eram já conhecidas através dos teoremas gregos sobre subtracção, como por exemplo (a -b)(c -d) = ac +bd -ad -bc, mas os hindus converteram-nas em regras numéricas sobre números negativos e positivos. 
    Diofanto (Séc. III) operou facilmente com os números negativos. Eles apareciam constantemente em cálculos intermédios em muitos problemas do seu "Aritmetika", no entanto havia certos problemas para o qual as soluções eram valores inteiros negativos como por exemplo:
4 = 4x +20
3x -18 = 5x^2
    Nestas situações Diofanto limitava-se a classificar o problema de absurdo. Nos séculos XVI e XVII, muitos matemáticos europeus não apreciavam os números negativos e, se esses números apareciam nos seus cálculos, eles consideravam-nos falsos ou impossíveis. Exemplo deste facto seria Michael Stifel (1487- 1567) que se recusou a admitir números negativos como raízes de uma equação, chamando-lhes de "numeri absurdi". Cardano usou os números negativos embora chamando-os de "numeri ficti". A situação mudou a partir do (Séc.XVIII) quando foi descoberta uma interpretação geométrica dos números positivos e negativos como sendo segmentos de direções opostas.

NÚMEROS INTEIROS – NÚMEROS NEGATIVOS

Os inteiros, ou números inteiros, consistem dos números naturais (0, 1, 2, ...) e dos números inteiros negativos (-1, -2, -3, ...). O conjunto de todos os inteiros é normalmente chamado de Z (Mais apropriadamente, um Z em blackboard bold, Z), que vem de Zahlen (do alemão, "número").
Inteiros podem ser adicionados ou subtraídos, multiplicados e comparados. A principal razão para a existência dos números negativos é que tornou possível resolver todas as equações da forma: a + x = b para a incógnita x; nos números naturais apenas algumas destas equações eram solúveis.
Como os números naturais, os inteiros formam um conjunto infinito contável.


Pertencem ao conjunto dos números inteiros os números negativos, os números positivos e o zero. Fazendo uma comparação entre os números naturais e os inteiros percebemos que o conjunto dos naturais está contido no conjunto dos inteiros.

N = {
0,1,2,3,4,5,6, ... }
                            
Z = { ... , -3,-2,-1,
0,1,2,3,4, ... }

                    N C Z
O conjunto dos números inteiros é representado pela letra Z maiúscula. Os números positivos são representados com o sinal de (+) positivo na frente ou com sinal nenhum (+2 ou 2), já os números negativos são representados com o sinal de negativo (-) na sua frente (-2).

►Os números inteiros são encontrados com freqüência em nosso cotidiano, por exemplo:

♦ Exemplo 1: 


Um termômetro em certa cidade que marcou 10°C acima de zero durante o dia, à noite e na manhã seguinte o termômetro passou a marcar 3°C abaixo de zero. Qual a relação dessas temperaturas com os números inteiros? Quando falamos acima de zero, estamos nos referindo aos números positivos  e quando falamos dos números abaixo de zero estamos referindo aos números negativos.

+10° C ------------- 10° C acima de zero
                      - 3° C --------------- 3° C abaixo de zero
♦ Exemplo 2:

Vamos imaginar agora que uma pessoa tem R$500,00 depositados num banco e faça sucessivas retiradas:

• dos R$500,00 retira R$200,00 e fica com R$300,00

• dos R$300,00 retira R$200,00 e fica com R$100,00

• dos R$100,00 retira R$200,00 e fica devendo R$ 100,00
A última retirada fez com que a pessoa ficasse devendo  dinheiro ao banco. Assim:

Dever R$100,00 significa ter R$100,00 menos que zero. Essa dívida pode ser representada por – R$100,00.
►Oposto de um número inteiro


O oposto de um número positivo é um número negativo simétrico. Por exemplo: o oposto de +2 é -2; o oposto de -3 é +3.

►O conjunto dos números inteiros possui alguns subconjuntos:

- Inteiros não – nulos
São os números inteiros, menos o zero.
Na sua representação devemos colocar * ao lado do Z.
Z* = {..., -3, -2, -1, 1, 2, 3,...}

- Inteiros não positivos
São os números negativos incluindo o zero.
Na sua representação deve ser colocado - ao lado do Z.
Z_ = {..., -3, -2, -1, 0}

- Inteiros não positivos e não – nulos São os números inteiros do conjunto do Z_ excluindo o zero.
Na sua representação devemos colocar o _ e o * ao lado do Z.
Z*_ = {..., -3, -2, -1}

- Inteiros não negativos
São os números positivos incluindo o zero.
Na sua representação devemos colocar o + ao lado do Z.
Z + = { 0,1 ,2 ,3, 4,...}
O Conjunto Z + é igual ao Conjunto dos N

- Inteiros não negativos e não - nulos
São os números do conjunto Z+, excluindo o zero.
Na sua representação devemos colocar o + e o * ao lado do Z.
Z* + = {1, 2, 3, 4,...} O Conjunto Z* + é igual ao Conjunto N*



CURIOSIDADES


Você sabe o que são números amigáveis?

Números amigáveis são pares de números onde um deles é a soma dos divisores do outro.
Por exemplo, os divisores de 220 são 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110, cuja soma é 284.
Por outro lado, os divisores de 284 são 1, 2, 4, 71 e 142 e a soma deles é 220. Fermat descobriu também o par 17.296 e 18.416. Descartes descobriu o par 9.363.584 e 9.437.056.
Caracteres numéricos



Os caracteres numéricos que usamos hoje têm uma origem árabe (provavelmente marroquina) e têm mais de mil anos. Uma possível explicação histórica é a de que a erosão provocada pelo uso alterou-os ligeiramente, mas a idéia original parece ter uma explicação curiosa:
O "1" tem um ângulo
O "2" tem dois ângulos
O "3" tem três ângulos
...
O "0" tem zero ângulos!


Invertendo e subtraindo


Você sabia que a diferença de um número com o outro que obtemos escrevendo-o de trás para frente é igual a zero ou a um múltiplo de nove? Veja alguns exemplos:

22 - 22 = 0
51 - 15 = 36 (múltiplo de 9)
444 - 444 = 0
998 - 899 = 99 (múltiplo de 9)
1350 - 0531 = 819 (múltiplo de 9)
654321 - 123456 = 530865 (múltiplo de 9)

DESAFIOS:

1 - DETERMINE O MENOR NÚMERO NATURAL CUJA:
  • DIVISÃO POR 2 TEM RESTO 1;
  • DIVISÃO POR 3 TEM RESTO 2;
  • DIVISÃO POR 4 TEM RESTO 3;
  • DIVISÃO POR 5 TEM RESTO 4;
  • DIVISÃO POR 6 TEM RESTO 5;
  • DIVISÃO POR 7 TEM RESTO 0.
Resposta:  Suponhamos que estamos procurando o número X. Observe essas condições exigidas pelo problema:
X dividido por 2 dá resto 1.
X dividido por 3 dá resto 2.
e assim por diante até:
X dividido por 6 dá resto 5.
Então podemos notar que o resto dá sempre uma unidade a menos do que o divisor.
Isso significa que o número seguinte ao número X, ou seja, X+1, será divisível por 2,3,4,5 e 6.
Bom...já que X+1 é divisível por esses cinco números, então o número X+1 pode ser igual a 4x5x6=120.
Portanto, se X+1 é igual a 120, o número X que estamos procurando é 119, que também é divisível por 7.


2 - Um pequeno caminhão pode carregar 50 sacos de areia ou 400 tijolos. Se foram colocados no caminhão 32 sacos de areia, quantos tijolos pode ainda ele carregar?

 Resposta:        1 saco de areia = 8 tijolos.
Se o caminhão pode carregar ainda 18 sacos então pode carregar 18 ´ 8 = 144 tijolos.
Fontes:

http://www.brasilescola.com/matematica/numeros-inteiros.htm
Referências Bibliográficas:

IMENES, Luiz Marcio; LELLIS, Marcelo. Matemática para todos. São Paulo: Ed. Scipione, 2002. 
GIOVANNI, José Ruy & GIOVANNI, José Ruy. Pensar & descobrir. São Paulo: FTD, 2005.

Vídeos: